
Calibration and Validation of a
Maintainability Model

ISO 9126

Vo
lu

m
e

Du
pl

ic
at

io
n

U
ni

t s
iz

e
U

ni
t c

om
pl

ex
ity

U
ni

t i
nt

er
fa

ci
ng

M
od

ul
e

co
up

lin
g

Analyzability

Changeability

Stability
Testability

✕ ✕ ✕

✕ ✕ ✕

✕✕

✕✕

Maintainability

SIG

Model

Validation

Calibration

HHHHI

HHHHH
HHHHI
HHHII
HHIII
HIIII

Software Analysis
Warehouse

Source Code Metrics Metric Thresholds

Profile Thresholds

Issue Trackers

Issue Handling Metrics

Correlation Analysis

Source Code Ratings

The software Improvement Group (SIG) developed a
Maintainability model based on the ISO 9126
standard [8]. The ISO 9126 defines Maintainability
in terms of 4 sub-characteristics: Analyzability,
Changeability, Stability and Testability. This
definition, however, does not provide clues on how
t o a s s e s s t h e s e s u b - c h a r a c t e r i s t i c s . S I G
operationalized the model by introducing source
code metrics to assess each of the sub-
characteristic [6]. These metrics cover source code
aspects such as volume, code duplication, coupling,
complexity, among others.

Together with the TÜV Informationstechnik GmbH
(TÜViT), SIG uses the model to evaluate and certify
the maintainability of software systems [3]. The
model is re-calibrated yearly in order to keep up to
date with the state-of-the-practice in software
engineering. In each calibration cycle, new
thresholds have so far been calculated for:

A way to validate a model that calculates
maintainability as a function of source code
internal metrics is to test correlations with software
development external metrics. Such external
metrics can be derived from issue tracking systems,
where defects and enhancements are recorded.
Two empirical studies revealed more issues are
solved [5] and faster [4] in the presence of more
maintainable source code. This alone does not show
causality, but increases the confidence in the
ratings calculated by the SIG maintainability model.

1) low level metric interpretation and aggregation
(Metric Thresholds) enabling the distinction
between good and bad coding [2];

2) mapping of source code measurements to star
ratings (Profile Thresholds) [1].

Metr ic thresholds enable a
qualitative interpretation of
quantitative measurements. These
t h r e s h o l d s d e f i n e f o u r r i s k
categories (low, medium, high and
very high) for each metric. [2]

Metrics at different levels
(unit, modules, component,
system) are calculated via
static analysis of source code.

All source code snapshots
(6040) of all systems (273, from
which 20 are open source) that
SIG analyzed are represented in
t h e S o f t w a r e A n a l y s i s
Warehouse [7], including the
r a w m e t r i c s a n d r a t i n g s
computed from them. These
metrics are calculated for a
total of 67 different languages.

Ratings are computed for all elements of
the model: system properties (volume,
duplication, etc), sub-characteristics
(analyzability, changeability, etc), and
finally for maintainability.

The hypotheses being tested in the
validation studies that SIG has been
conducting follow a generic template:
"Do the higher ratings as computed by the
model correlate to better performance of
software developers?" [4, 5]

So far SIG as explored issue handling
productivity metrics as proxies for developer
productivity. We found significant positive
correlations between the ratings produced by
the model and both (1) issue resolution time
(the time between opening and closing an
issue) [4] and (2) the number of solved issues
[5]. Interestingly, the correlations we found
are stronger at the upper levels of the model,
which seems to reveal a reinforcing effect of
the model's aggregation steps.

Issue tracking systems record
both defects and enhancements
regarding software products. This
data reveals external properties
of the software products (eg.
number of defects).

Profile thresholds map source
code risk categories to ratings.
These risk categories are a
direct product of applying
metric thresholds. [1]

Miguel Ferreira
m.ferreira@sig.eu
http://www.sig.eu
http://twitter.com/sig_eu

References

Model Calibration Validation

[1] Tiago Alves, José Pedro Correia and Joost Visser, "Benchmark-based Aggregation of Metrics to Ratings", under review, 2011
[2] Tiago Alves, Christiaan Ypma, and Joost Visser, "Deriving Metric Thresholds from Benchmark Data", ICSM 2010, IEEE Computer Society, 2010
[3] Robert Baggen, José Pedro Correia, Katrin Schill and Joost Visser, "Standardized Code Quality Benchmarking for Improving Software Maintainability", To be published in issue 20 of

Software Quality Journal, Springer, 2011
[4] Dennis Bijlsma, Miguel Alexandre Ferreira, Bart Luijten and Joost Visser, "Faster Issue Resolution With Higher Technical Quality of Software", To be published in issue 20 of Software

Quality Journal, Springer, 2011
[5] Dennis Bijlsma, "Indicators of Issue Handling Efficiency and their Relation to Software Maintainability", MSc thesis, University of Amsterdam, Amsterdam, The Netherlands, 2010
[6] José Pedro Correia, Yiannis Kanellopoulos and Joost Visser, "A Survey-based Study of the Mapping of System Properties to ISO/IEC 9126 Maintainability Characteristics", ICSM 2009,

September, 20-26, 2009, Edmonton, Alberta, Canada
[7] José Pedro Correia and Joost Visser, "Benchmarking Technical Quality of Software Products", WCRE 2008, October 15-18, 2008, Antwerp, Belgium
[8] Ilja Heitlager, Tobias Kuipers, and Joost Visser, "A Practical Model for Measuring Maintainability", QUATIC 2007, 30-39, IEEE Computer Society Press, 2007

