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1. Introduction

Software testing consumes 30 to 50% of a project's
effort [1]. Its benefits include early defect detection,
defect cause localization and removal of the fear to
apply changes in the code. Thus, maintaining high
quality test code is essential.

2. Aim

This study defines a test code quality model and
attempts to provide validation of such a model as an
indicator of issue handling performance.
e RQ1: How can we evaluate test code quality?
e RQ2: What is the relation between test code
quality and issue handling performance?

3. Measuring Test Code
Quality

Following the GQM approach, to answer RQ1 we
need to answer the following questions:

e How extensively is the system tested?
The higher the test coverage, the higher the
confidence that defects are detected throughout the
entire system.

e How effectively is the system tested?
Exercising the production code is essential but not
enough. Assuring the ability to detect and trace the
cause of a defect increase effectiveness.

e How maintainable is the test code?
It is necessary to write highly maintainable test code
in order to avoid making the adaptation of the tests
to the changes of the code a heavy burden.

4. Test Code Quality Model
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4. Test Code Quality Model (cont.)

e Coverage
Static estimation of test coverage [2].
e Assertion-McCabe Ratio
#assertions
McCabe of production code

e Assertion Density
#assertions

KLOC of test code

e Directness

Static estimation of code that is directly called from the tests.

¢ Maintainability Model
SIG's maintainability model modified and calibrated on test
code.
e Calibration
The model was calibrated on 86 Java Open Source and

Industry Systems as in SIG's maintainability model [3].
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5. Issue Tracking Performance
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e Defect Resolution Time
The sum of the intervals during which the issue was
open until the last time it was marked as "resolved" or
"closed".
e Throughput
#resolved issues per month

KLOC

¢ Productivity
#resolved issues per month

#developers

6. Design of Experiment
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The colored frame focuses on the objective of this study while what is out of the
frame is related work performed by Luijten et al. [5] and Bijlsma [6] that forms
the basis for this study.
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7. Data & Methods

Data

e 18 Open Source Java Systems

e 75 Snapshots

¢ Snapshots of the same systems were at least 1

year apart and had at least 30% code churn

Methods

e Spearman correlation analysis

e Confidence level at 99% (a = 0.01)

e Bonferroni correction for 4 tests (a = 0.0025 )

8. Results

Correlations with Test Code Quality Model Rating

p-value cor N
Defect Resolution
clect nesol 0.3256 | 0.0534 63
Time Rating
Throughput 0.0001 0.5049 54
Productivity 0.0000 0.5133 54
Production Code
Maintainability 0.0001 0.4217 75

9. Discussion & Conclusions

e A Test Code Quality Model has been developed,
based on direct, static measurements of the
source code.

e No significant correlation was found between
Test Code Quality and Defect Resolution Time.
An explanation would be that test code detects
defects during development and therefore most
of the detected defects are never reported in an
ITS.

e Strong, significant correlation was found
between Test Code Quality and throughput and
productivity, demonstrating that in systems with
higher test code quality issues are being
resolved faster at the team and developer level.

¢ Strong, significant correlation was found
between Test Code Quality and Production Code
Maintainability, showing that either good code
leads to better tests, test-driven development
(TDD) leads to better code or just reflects the
skill level of the development team.

10. Threats to Validity

e Quality of ITS Data: Poor ITS usage leads to
noisy data.

e Confounding Factors: Although we controlled
for production code maintainability via multiple
regression analysis, other factors such as the
popularity of the system exist.

e Generalization beyond Java

e Generalization beyond Open Source Systems
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