Constructing a Test Code Quality Model
and Assessing its Correlation to Issue Handling

Jr

Software Improvement Group

1. Introduction

Software testing consumes 30 to 50% of a project's
effort [1]. Its benefits include early defect detection,
defect cause localization and removal of the fear to
apply changes in the code. Thus, maintaining high
quality test code is essential.

2. Aim

This study defines a test code quality model and
attempts to provide validation of such a model as an
indicator of issue handling performance.
e RQ1: How can we evaluate test code quality?
e RQ2: What is the relation between test code
quality and issue handling performance?

3. Measuring Test Code
Quality

Following the GQM approach, to answer RQ1 we
need to answer the following questions:

e How extensively is the system tested?
The higher the test coverage, the higher the
confidence that defects are detected throughout the
entire system.

e How effectively is the system tested?
Exercising the production code is essential but not
enough. Assuring the ability to detect and trace the
cause of a defect increase effectiveness.

e How maintainable is the test code?
It is necessary to write highly maintainable test code
in order to avoid making the adaptation of the tests
to the changes of the code a heavy burden.

4. Test Code Quality Model

Coverage
Assertion-McCabe Ratio
Assertion Density
Directness
Maintainability Model

Completeness

Effectiveness

Maintainability

Duplication
Unit size

Analyzability

Changeability

Stabilty

Dimitrios Athanasiou
dmitri.athanasiou@gmail.com

Supervisors: Ariadi Nugroho, Joost Visser and Andy Zaidman

4. Test Code Quality Model (cont.)

e Coverage
Static estimation of test coverage [2].
e Assertion-McCabe Ratio
#assertions
McCabe of production code

e Assertion Density
#assertions

KLOC of test code

e Directness

Static estimation of code that is directly called from the tests.

¢ Maintainability Model
SIG's maintainability model modified and calibrated on test
code.
e Calibration
The model was calibrated on 86 Java Open Source and

Industry Systems as in SIG's maintainability model [3].

70th, 80th, 90th
Percentiles

=

= infolloin
= > o> ([0IBIe > E Skt et

Ratings Distribution
5%/30%/30%/30%/5% e 3 3k 3k 3k

Retrieval

5. Issue Tracking Performance

INVALID

@ Status

FIXED Resulting
Resolution

FIXED
ASSIGNED

REOPENED

RESOLVED

WONTFIX K
. if resolution is FIXED

WORKSFORME

e
-

Issue Report Life-cycle (adapted from [4] )

e Defect Resolution Time
The sum of the intervals during which the issue was
open until the last time it was marked as "resolved" or
"closed".
e Throughput
#resolved issues per month

KLOC

¢ Productivity
#resolved issues per month

#developers

6. Design of Experiment

Defects / Enhancements

Defect
Resolution Time
Issue Report
?

Src \> TS |
e — QO //:

Issue Reports
/ Throughput /
Productivity fﬂ _
Negative
T Correlation
?

Test Quality TerltJaCiic:de
test Indicators y

file Model

Production Code

o

Test Code Quality Positive
Rating Correlation

Test Code

Software Quality
Metrics (SAT)

\K ' Software | Maintainability

»| Quality Model -
l (SIG) | Rating

The colored frame focuses on the objective of this study while what is out of the
frame is related work performed by Luijten et al. [5] and Bijlsma [6] that forms
the basis for this study.

[1] Michael Ellims, James Bridges, and Darrel C. Ince. The economics of unit testing. Empirical Softw. Engg., 11:5-31, March 2006.
[2] Tiago L. Alves and Joost Visser. Static estimation of test coverage. In Proceedings of the 2009 Ninth IEEE International Working Conference on Source Code Analy- sis and Manipulation, SCAM ’09, pages 55-64, Washington, DC, USA, 2009.

IEEE Computer Society.

e]
TUDelft

7. Data & Methods

Data

e 18 Open Source Java Systems

e 75 Snapshots

¢ Snapshots of the same systems were at least 1

year apart and had at least 30% code churn

Methods

e Spearman correlation analysis

e Confidence level at 99% (a = 0.01)

e Bonferroni correction for 4 tests (a = 0.0025 )

8. Results

Correlations with Test Code Quality Model Rating

p-value cor N
Defect Resolution
clect nesol 0.3256 | 0.0534 63
Time Rating
Throughput 0.0001 0.5049 54
Productivity 0.0000 0.5133 54
Production Code
Maintainability 0.0001 0.4217 75

9. Discussion & Conclusions

e A Test Code Quality Model has been developed,
based on direct, static measurements of the
source code.

e No significant correlation was found between
Test Code Quality and Defect Resolution Time.
An explanation would be that test code detects
defects during development and therefore most
of the detected defects are never reported in an
ITS.

e Strong, significant correlation was found
between Test Code Quality and throughput and
productivity, demonstrating that in systems with
higher test code quality issues are being
resolved faster at the team and developer level.

¢ Strong, significant correlation was found
between Test Code Quality and Production Code
Maintainability, showing that either good code
leads to better tests, test-driven development
(TDD) leads to better code or just reflects the
skill level of the development team.

10. Threats to Validity

e Quality of ITS Data: Poor ITS usage leads to
noisy data.

e Confounding Factors: Although we controlled
for production code maintainability via multiple
regression analysis, other factors such as the
popularity of the system exist.

e Generalization beyond Java

e Generalization beyond Open Source Systems

11. Acknowledgments

The author would like to thank colleagues Miguel A.
Ferreira and José Pedro Correia for their valuable
ideas and insights they have provided throughout
the project.

[3] llja Heitlager, Tobias Kuipers, and Joost Visser. A practical model for measuring maintainability. In Proceedings of the 6th International Conference on Quality of Information and Communications Technology, pages 30-39, Washington, DC,

USA, 2007. IEEE Computer Society.

[4] Andreas Zeller. Why Programs Fail: A Guide to Systematic Debugging. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.
[5] Bart Luijten, Joost Visser, and Andy Zaidman. Assessment of issue handling ef- ficiency. In Jim Whitehead and Thomas Zimmermann, editors, Proceedings of the 7th Working Conference on Mining Software Repositories (MSR 2010), pages

94-97. IEEE Computer Society, 2010.

[6] Dennis Bijlsma. Indicators of Issue Handling Efficiency and their Relation to Software Maintainability. MSc thesis, University of Amsterdam, Amsterdam, The Netherlands, 2010.



